import os
import numpy as np
import nibabel as nib
from scipy.fftpack import fft, ifft
def ideal_bandpass(data, sample_period, bandpass_freqs):
    # Derived from YAN Chao-Gan 120504 based on REST.
    sample_freq = 1.0 / sample_period
    sample_length = data.shape[0]
    data_p = np.zeros(int(2 ** np.ceil(np.log2(sample_length))))
    data_p[:sample_length] = data
    LowCutoff, HighCutoff = bandpass_freqs
    if LowCutoff is None:  # No lower cutoff (low-pass filter)
        low_cutoff_i = 0
    elif LowCutoff > sample_freq / 2.0:
        # Cutoff beyond fs/2 (all-stop filter)
        low_cutoff_i = int(data_p.shape[0] / 2)
    else:
        low_cutoff_i = np.ceil(LowCutoff * data_p.shape[0] * sample_period).astype(
            "int"
        )
    if HighCutoff > sample_freq / 2.0 or HighCutoff is None:
        # Cutoff beyond fs/2 or unspecified (become a highpass filter)
        high_cutoff_i = int(data_p.shape[0] / 2)
    else:
        high_cutoff_i = np.fix(HighCutoff * data_p.shape[0] * sample_period).astype(
            "int"
        )
    freq_mask = np.zeros_like(data_p, dtype="bool")
    freq_mask[low_cutoff_i : high_cutoff_i + 1] = True
    freq_mask[data_p.shape[0] - high_cutoff_i : data_p.shape[0] + 1 - low_cutoff_i] = (
        True
    )
    f_data = fft(data_p)
    f_data[freq_mask is not True] = 0.0
    return np.real_if_close(ifft(f_data)[:sample_length])
[docs]
def bandpass_voxels(realigned_file, regressor_file, bandpass_freqs, sample_period=None):
    """Performs ideal bandpass filtering on each voxel time-series.
    Parameters
    ----------
    realigned_file : string
        Path of a realigned nifti file.
    bandpass_freqs : tuple
        Tuple containing the bandpass frequencies. (LowCutoff_HighPass HighCutoff_LowPass)
    sample_period : float, optional
        Length of sampling period in seconds.  If not specified,
        this value is read from the nifti file provided.
    Returns
    -------
    bandpassed_file : string
        Path of filtered output (nifti file).
    """
    nii = nib.load(realigned_file)
    data = nii.get_fdata().astype("float64")
    mask = (data != 0).sum(-1) != 0
    Y = data[mask].T
    Yc = Y - np.tile(Y.mean(0), (Y.shape[0], 1))
    if not sample_period:
        hdr = nii.header
        sample_period = float(hdr.get_zooms()[3])
        # Sketchy check to convert TRs in millisecond units
        if sample_period > 20.0:
            sample_period /= 1000.0
    Y_bp = np.zeros_like(Y)
    for j in range(Y.shape[1]):
        Y_bp[:, j] = ideal_bandpass(Yc[:, j], sample_period, bandpass_freqs)
    data[mask] = Y_bp.T
    img = nib.Nifti1Image(data, header=nii.header, affine=nii.affine)
    bandpassed_file = os.path.join(os.getcwd(), "bandpassed_demeaned_filtered.nii.gz")
    img.to_filename(bandpassed_file)
    regressor_bandpassed_file = None
    if regressor_file is not None:
        if regressor_file.endswith(".nii.gz") or regressor_file.endswith(".nii"):
            nii = nib.load(regressor_file)
            data = nii.get_fdata().astype("float64")
            mask = (data != 0).sum(-1) != 0
            Y = data[mask].T
            Yc = Y - np.tile(Y.mean(0), (Y.shape[0], 1))
            Y_bp = np.zeros_like(Y)
            for j in range(Y.shape[1]):
                Y_bp[:, j] = ideal_bandpass(Yc[:, j], sample_period, bandpass_freqs)
            data[mask] = Y_bp.T
            img = nib.Nifti1Image(data, header=nii.header, affine=nii.affine)
            regressor_bandpassed_file = os.path.join(
                os.getcwd(), "regressor_bandpassed_demeaned_filtered.nii.gz"
            )
            img.to_filename(regressor_bandpassed_file)
        else:
            with open(regressor_file, "r") as f:
                header = []
                # header wouldn't be longer than 5, right? I don't want to
                # loop over the whole file
                for i in range(5):
                    line = f.readline()
                    if line.startswith("#") or isinstance(line[0], str):
                        header.append(line)
            # usecols=[list]
            regressor = np.loadtxt(regressor_file, skiprows=len(header))
            Yc = regressor - np.tile(regressor.mean(0), (regressor.shape[0], 1))
            Y_bp = np.zeros_like(Yc)
            # Modify to allow just 1 regressor column
            shape = (
                regressor.shape[0] if len(regressor.shape) < 1 else regressor.shape[1]
            )
            for j in range(shape):
                Y_bp[:, j] = ideal_bandpass(Yc[:, j], sample_period, bandpass_freqs)
            regressor_bandpassed_file = os.path.join(
                os.getcwd(), "regressor_bandpassed_demeaned_filtered.1D"
            )
            with open(regressor_bandpassed_file, "w") as ofd:
                # write out the header information
                for line in header:
                    ofd.write(line)
                nuisance_regressors = np.array(Y_bp)
                np.savetxt(ofd, nuisance_regressors, fmt="%.18f", delimiter="\t")
    return bandpassed_file, regressor_bandpassed_file 
def afni_1dBandpass(in_file, highpass, lowpass, tr=1):
    """
    Perform AFNI 1dBandpass.
    Parameters
    ----------
    in_file : string
        Path of an input 1D file
    highpass : float
        LowCutoff/HighPass
    lowpass : float
        HighCutoff/LowPass
    Returns
    -------
    out_file : string
        Path of an output 1D file
    """
    import os
    basename = os.path.basename(in_file)
    filename, file_extension = os.path.splitext(basename)
    out_file = os.path.join(os.getcwd(), filename + "_bp" + file_extension)
    cmd = "1dBandpass -dt %f %f %f %s > %s" % (tr, highpass, lowpass, in_file, out_file)
    os.system(cmd)
    return out_file